ECE520 Course Notes

Stephen Yang

September-December 2021

1 Electromagnetics Fundamentals

1.1 Maxwell Equations

Integral Form
\n
$$
\oint_C E \cdot dl = -\iint_S \frac{\partial B}{\partial t}
$$
\n
$$
\oint_C H \cdot dl = \iint_S \left(\frac{\partial D}{\partial t} + J\right) = I_{enc}
$$
\n
$$
\oint_S D \cdot ds = \iiint_{\partial} \rho dV = Q
$$
\n
$$
\oint_S B \cdot ds = 0
$$
\n
$$
\nabla \times H = \frac{\partial D}{\partial t} + J
$$
\n
$$
\nabla \times H = \frac{\partial D}{\partial t} + J
$$
\n
$$
\nabla \cdot D = \rho
$$
\n
$$
\nabla \cdot B = 0
$$

1.2 Lorentz Force

Charge q with velocity \vec{v} through \vec{B} field experiences force

$$
F = q(\vec{v} \times \vec{B})
$$

1.3 Force Charge Interactions

$$
q\vec{v} = i\vec{l} \quad F = q(\vec{v} \times \vec{B}) \quad F = i(\vec{l} \times \vec{B})
$$

1.4 E Field

$$
\vec{E} = \frac{\vec{F}}{q} \qquad \vec{E}_m = \vec{v} \times \vec{B}
$$

1.5 Potential

$$
e = -\int_a^b \vec{E} \cdot \vec{dl}
$$

2 Generalized Machine Theory

$$
T_q \propto |\vec{B_r}||\vec{B_s}|\sin{\gamma}
$$

2.1 Flux

$$
B_s = \frac{\phi_s}{A} \qquad A = \pi rl
$$

2.2 Torque for Hypothetical Machine

$$
T_q = \frac{2i_r \phi_s l_r N}{\pi r l} = \frac{2N}{\pi} \phi_s i_r
$$

2.3 Torque and Physical Parameters

$$
T_q = \frac{2Ni_r}{r\pi} \cdot B_s \cdot \pi r^2 l
$$

Where

- \bullet *l* is core length (axial length of rotor)
- r is rotor radius $(2r$ is core height)
- $\frac{2Ni_r}{r\pi}$ is linear current density on surface of rotor (limited by heat/cooling)
- B_s is stator B field (limited by magnetic saturation, magnetic properties)
- $\pi r^2 l$ is rotor volume

2.4 Torque Volume Relationship

$T_q \propto$ Volume

2.5 Power for Machines

$$
P = T_q \omega_m
$$

Valid for all DC/AC machines

2.6 Poles

Each pole produces flux:

$$
T_q = \frac{pN}{\pi} \phi_s i_r
$$

where p is the number of poles

2.7 Machine Constant

Define machine constant k :

$$
k=\frac{pN}{\pi}
$$

which yields

$$
T_q = k\phi_s i_r
$$

2.8 Speed Torque Relationships

When torque changes (has a ripple, or set point), speed is not always a linear function of torque:

$$
\omega_m(t) = \frac{1}{J} \int T_q(\tau) d\tau
$$

3 DC Machines

$$
T_q = k\phi_s i_r \qquad k = \frac{pN}{\pi}
$$

$$
e_a = k\phi\omega_m
$$

3.1 Torque

$$
T_q = k\phi_s i_r
$$

3.2 Mathematical Model

Electrical:

$$
\begin{cases}\nV_a = R_a i_a + L_a \frac{di_a}{dt} + e_a \\
V_f = R_f i_f + L_f \frac{di_f}{dt}\n\end{cases}
$$

Mechanical:

$$
J\frac{d\omega_m}{dt} = T_q - T_{load} - T_{loss}
$$

Coupling:

 $e_a = k\phi\omega_m$ $k\phi = k_f i_f$

3.3 Steady State Assumptions

$$
\frac{di_a}{dt} = 0 \qquad \frac{d\omega_m}{dt} = 0 \qquad \frac{di_f}{dt} = 0
$$

$$
V_a = R_a I_a + e_a \qquad V_f = R_f I_f
$$

$$
e_a = k\phi\omega_m \qquad T_q = k\phi I_a
$$

$$
k\phi = k_f i_f
$$

$$
T_q = T_{load} + T_{loss}
$$

Looks linear, but isnt

3.4 Common Load Characteristics

Typically, load is very non-linear (one of the below)

- Lifting: $T_{load} = c$
- Compressor: $T_{load} = c \cdot \omega_m$
- Fans/Pumps: $T_{load} = c \cdot \omega_m^2$
- Winders: $T_{load} = \frac{c}{\omega_m}$

3.5 Speed Torque Diagrams

$$
V_a = R_a I_a + k\phi\omega_m
$$

Set $I_a = \frac{T_q}{k\phi}$ and find:

$$
\omega = \frac{V_a}{k\phi} - \frac{R_a}{(k\phi)^2}T_q
$$

Usually, $-\frac{R_a}{(k\phi^2)}$ is shallow slope

3.6 Control Modes

3.6.1 V_a Control

Consider V_a^n and $k\phi^n$. Then change to $V_a = \frac{V_a}{m}$ to set V_a . Can use power electronics (buck) to supply variable V_a .

Can be **highly efficient** (DCM _ilhp: $\eta > 90\%$, buck: $\eta > 95\%$

3.6.2 $k\phi$ Control

$$
k\phi \propto i_f \qquad i_f = \frac{V_f}{R_f + R_{f,ex}}
$$

Add $R_{f,ex}$ in series with field winding to change $k\phi$

Caution: $T_q = k\phi i_a$. i_a can get huge

3.6.3 R_a Control

Add external resistor in series with R_a (induce large R_a)

Don't want starting torque $<< T_{max}$ (torque at 0 speed should not be extremely large)

3.7 Operating Region

4 Machine Testing

To test a motor, use a dynamometer.

Since shafts connected:

 $\omega_{m1}=\omega_{m2}=\omega_m$

Need $J_{total} \frac{d\omega_m}{dt} = 0$ (neglecting loss):

$$
T_{q_1} = T_{q_2} = 0 \qquad T_{q_1} = T_{q_2}
$$

4.1 Servo Motor as Dyno

Can use speed control or torque control motor as Dyno (horizontal or vertical characteristic).

5 Power Electronics

Machine Limits: ω_m-T_q plane Chopper limits: $V-I$ plane

5.1 1Q Chopper

No regeneration!

5.2 2Q Chopper

5.3 4Q Chopper

Motor + Regen in both direction

- not frequently used
- only necessary when instantaneous forward/backwards transitions are required
- could also go backwards by inverting field (H-bridge)

6 DCM High Level Control

6.1 i^a Control

Set i_a , regulate torque (sometimes called torque control instead of current control). Create a vertical characteristic.

Observation: $i_a \rightarrow i_a^*$ changes very quickly, but ω_m changes slowly

6.1.1 1Q or 2Q Chopper

$$
V_a = DV_d
$$

Caution: very easy to go over-speed, need to ensure

 $k\phi = k\phi_{rated}$

6.2 Control Block Diagrams

Convert DE into transfer functions. See 1.

6.3 Current Control Design

- 1. Track step changes in i_a^*
- 2. Reject e_a (assumed as DC)
- 3. Zero e_{ss} tracking error
- 4. Fast Response

Use a PI controller

$$
C_i(s) = \frac{k_i(s+a_1)}{s}
$$

6.4 Speed Control Design

- 1. Track step changes in ω^*
- 2. Reject constant $(T_{load} + T_{loss})$
- 3. Reasonably fast dynamics BUT must be slower than inner control loop

PI could work

$$
C_{\omega}(s) = \frac{k_2(s + a_2)}{s}
$$

Keep in mind, plant contains $\frac{1}{s}$.

6.5 Position Control

See 2.

Care: no one watching speed. Set i_a^* based on θ_m^* regulator

7 Space Vectors

 $\vec{B_s}$ is a vector in 2D, used to express cylindrical coords in complex coordinates

$$
\vec{B_s} = B_{sx}\hat{a_x} + B_{sy}\hat{a_y}
$$

in Space vector form:

$$
\vec{B_s} = |B_s| e^{j\angle B_s} \qquad |\vec{B_s}| - \sqrt{B_{sx}^2 + B_{sy}^2}
$$

8 AC Synchronous Machines

Sizes from 1 mW to 1000 MW. Benefits compared to DCM:

- does not require commutator
- cheap
- able to run at $\approx 2 \cdot T_{max}$

8.1 Torque

$$
T_q = 2N_s l \cdot r I_s |B_r| \sin \gamma
$$

where

- \bullet *l* is core length (axial length of rotor)
- r is rotor radius

8.1.1 Torque Characteristics

For ripple free torque, require

- 1. const amplitude $|B_r|$
- 2. const amp $|B_s|$ in winding
- 3. smooth rotation of fictitious winding to create rotating South on stator for rotor North to follow

8.1.2 Synchronous Torque

$$
T_q \propto \hat{I_s} |\hat{B_r}| \sin((\omega_s \zeta_s) - (\omega_{me} \zeta_{me}))
$$

The sin component has an average value of zero UNLESS $\omega_s = \omega_{me}$ (synchronous speed equals mechanical speed).

8.2 Orientation Matrix

$$
\begin{bmatrix} B_{sx} \\ B_{sy} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} k \begin{bmatrix} i_\alpha \\ i_\beta \end{bmatrix}
$$

8.3 SM Space Vectors

$$
\vec{B_s} = \begin{bmatrix} e^{j0} & e^{j\frac{\pi}{2}} \end{bmatrix} \begin{bmatrix} B_{s\alpha} \\ B_{s\beta} \end{bmatrix}
$$

Where α is aligned with the x-axis, and β is aligned with the y-axis. In general,

$$
\vec{B_s} = \begin{bmatrix} e^{j\theta_m} & e^{j\theta_n} \end{bmatrix} \begin{bmatrix} B_{sm} \\ B_{sn} \end{bmatrix}
$$

8.3.1 Current Space Vector

Since we can't set B_s (only current controllable), defined current space vector

$$
\vec{I_s} \equiv \frac{\vec{B_s}}{k}
$$

and

$$
B_{s\alpha} = kI_{\alpha} \qquad B_{s\beta} = kI_{\beta}
$$

8.3.2 Voltage Space Vector

$$
\vec{v} = \begin{bmatrix} e^{j0} & e^{j\frac{\pi}{2}} \end{bmatrix} \begin{bmatrix} V_{\alpha} \\ V_{\beta} \end{bmatrix}
$$

Note:

- $\mathcal{R}\{\vec{v}\}\$ drives x-axis current, flux
- $\bullet \,$ $\Im\{\vec{v}\}$ drives y-axis current, flux

8.4 2D Space Vector Modelling

$$
R_{\alpha} = R_{\beta} = R \qquad L_{\alpha} = L_{\beta} = L
$$

$$
\vec{v} = R\vec{i} + L\frac{d\vec{i}}{dt}
$$

where \vec{v},\vec{i} are the space vectors

8.4.1 Balanced Sinusoidal Steady State

For a 2ϕ machine, let

$$
i_{\alpha}(t) = \hat{I}_s \cos(\omega_s t + \zeta_s)
$$

$$
i_{\beta}(t) = \hat{I}_s \sin(\omega_s t + \zeta_s)
$$

Then

$$
I_s(t) = \begin{bmatrix} 1 & j \end{bmatrix} \begin{bmatrix} i_{\alpha}(t) \\ i_{\beta}(t) \end{bmatrix} = \hat{I}_s e^{j(\omega_s t + \zeta_s)}
$$

8.5 3D Space Vector Modelling

$$
\vec{B_s} = \begin{bmatrix} e^{j0} & e^{j\frac{2\pi}{3}} & e^{j\frac{4\pi}{3}} \end{bmatrix} \begin{bmatrix} B_{sa} \\ B_{sb} \\ B_{sc} \end{bmatrix}
$$

$$
\begin{bmatrix} B_{sx} \\ B_{sy} \end{bmatrix} = \begin{bmatrix} 1 & \cos(\frac{2\pi}{3}) & \cos(\frac{4\pi}{3}) \\ 0 & \sin(\frac{2\pi}{3}) & \sin(\frac{4\pi}{3}) \end{bmatrix} \cdot \begin{bmatrix} B_{sa} \\ B_{sb} \\ B_{sc} \end{bmatrix}
$$

8.5.1 Balanced Sinusoidal Steady State

For a 3ϕ machine, let

$$
i_a(t) = \hat{I}_s \cos(\omega_s t + \zeta_A)
$$

$$
i_b(t) = \hat{I}_s \sin(\omega_s t + \zeta_B - \frac{2\pi}{3})
$$

$$
i_c(t) = \hat{I}_s \sin(\omega_s t + \zeta_s - \frac{4\pi}{3})
$$

8.6 Clarke Transform

Orientation matrix not invertible (can't convert \vec{B} to B_{sa}, B_{sb}, B_{sc} . Hence, use the Clarke Transform:

$$
\begin{bmatrix} i_\alpha \\ i_\beta \\ i_0 \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 1 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 1 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix}
$$

where i_a, i_b, i_c are the 3ϕ current components. i_0 is the zero sequence current

component (*i*₀ connected to neutral wire).
 $\frac{2}{3}$ component for convenience s.t. $|\vec{I_s}| = \hat{I_s}$ in steady state (balanced current, $i_{a,b,c}$ has peak amplitude \hat{I}_s .

8.7 SM Modelling

$$
V_{\alpha} = L_m \frac{di_{\alpha}}{dt} \qquad V_{\beta} = L_m \frac{di_{\beta}}{dt}
$$

$$
e_m^{\dagger} = L_m \frac{di_m}{dt}
$$

$$
i_m^{\dagger} = i_s^{\dagger} + i_f^{\dagger} \implies e_m^{\dagger} = L_m \frac{di_s^{\dagger}}{dt} + L_m \frac{di_f^{\dagger}}{dt}
$$

If speed known (i.e. $\theta_{me} = \omega_{me} \cdot t + \rho_{me},$ then

$$
\vec{ij} = k_f i_r e^{j(\omega_{me} \cdot t + \rho_{me})}
$$

$$
\frac{d\vec{i_f}}{dt} = j\omega_{me} \cdot k_f i_r e^{j(\omega_{me} \cdot t + \rho_{me})} = j\omega_{me} i_f
$$

In summary,

$$
\frac{d\vec{i_f}}{dt} = j\omega_{me}i_f \qquad \vec{e_f} = j\omega_{me}L_m\vec{i_f}
$$

8.7.1 Vector Diagram

8.7.2 Current Model

8.7.3 Voltage Model

$$
\frac{d}{dt} = L_m \frac{d}{dt} \vec{I} + \vec{I} + \vec{I}m_{m} L_m \vec{I} +
$$

8.8 Multi Pole SM

Define:

- ω_s : $\vec{B_s}$ speed
- $\omega_{me}: \vec{B_r}$ speed
- $\bullet \hspace{0.1cm} \omega_{m} \colon \text{physical shaft speed}$

$$
\omega_{me} = \frac{p}{2}\omega_m \qquad \theta_{me} = \frac{p}{2}\theta_m
$$

$$
\omega_s = \omega_{me}
$$

where p is the number of poles

8.9 Power

The power per phase is:

$$
P_{perphase} = |\vec{E_f}| |I_s|
$$

Total power is

$$
P = n \cdot \frac{1}{2} |\vec{E_f}| |I_s| \sin \gamma
$$

Apply $\vec{E_f} = j\omega_{me}L_m \cdot \vec{I_f}$

$$
P = \frac{n}{2} j \omega_{me} L_m \cdot |I_f||I_s| \sin \gamma
$$

where $\frac{1}{2}$ since per phase power is peak, not RMS. sin γ is the angle between $\vec{I_s}$ and $\vec{I_f}$.

Thus, we can write torque as

$$
T_q = \frac{P}{\omega_m} = \frac{n}{2} \frac{p}{2} \cdot L_m |I_f| |I_s| \sin \gamma
$$

Define $k\phi = \frac{p}{2}L_m|I_f|$:

$$
T_q = \frac{n}{2} k \phi |I_s| \sin \gamma
$$

If $\gamma = 90 \, (\sin \gamma = 1)$, then

$$
T_q = T_{qmax} = \frac{n}{2} k \phi |I_s|
$$

8.10 Brushless DCM

$$
|\vec{E_f}| = \omega_{me} \cdot \frac{p}{2} L_m |I_f| = \omega_m k \phi
$$

This resembles DC motor (but is AC synchronous), so sometimes called Brushless DCM.

8.11 Speed Torque Diagrams

Constant Frequncy operation: Connect to fixed frequency ω_s voltage/current source

If operating point requires $\gamma > 90^0$, machine cannot reach (loss of synchronization).

8.12 γ-Torque Plot

Show $T_q \propto \gamma$

8.13 Voltage Source Operation

Assume

- Synchronous operation
- $\bullet \ \omega_{me} = \omega_s$
- Grid voltage known
- $\vec{V_g} = \vec{E_m}$

$$
\vec{I_f} = k_f i_r e^{j\omega_{me} \cdot t}
$$
\n
$$
\vec{E_f} = |E_f| e^{j\omega_s \cdot t + \frac{\pi}{2}} = j\omega_{me} L_m | \vec{I_f} | e^{j\omega_s \cdot t + \frac{\pi}{2}}
$$
\n
$$
\vec{V_g} = \vec{E_m} = |\vec{E_m}| e^{j\omega_s \cdot t + \frac{\pi}{2} + \delta}
$$

8.13.1 Power

$$
P = \frac{n}{2} \cdot \Re\left\{\vec{E_f} \cdot \vec{I_s}^*\right\} = \frac{n}{2} \frac{\hat{E_f} \hat{E_m}}{\omega_s L_m} \sin \delta
$$

8.13.2 Torque

$$
T_q = \frac{n}{2} \frac{p}{2} \frac{1}{\omega_{me}} \frac{\hat{E_f} \hat{E_m}}{\omega_{me} L_m} \sin \delta
$$

$$
T_q = \frac{n}{2} \frac{p}{2} \frac{1}{\omega_{me}} |I_f| \frac{\hat{E_m}}{\omega_{me} L_m} \sin \delta
$$

8.14 SM Parasitics

- 1. Stator Leakage Inductance \mathcal{L}_s
- 2. Stator Resistance R_s
- 3. Rotational Losses
- 4. Mechanical Inertia

9 SM High Level Control

10 Induction Machines

No magnets on rotor or stator. Induce voltage in rotor from stator (induction). Requires AC voltage on stator.

Advantages:

- Low cost (no rare earth magnets required)
- No brushes (commutation)
- $\bullet\,$ No DC field
- $\bullet~$ Low maintenance, robust
- $\bullet\,$ High torque (can exceed $T_{qmax})$

Disadvantages:

- Heavier/bulkier than comparable PMSM
- High startup torque

10.1 IM Fields

$$
\omega_s=\omega_m+\omega_r
$$

$$
\omega_{me} = \frac{p}{2}\omega_m \qquad \omega_m = \frac{2}{p}\omega_{me}
$$

10.2 IM Modelling

Assume $R_m = 0$. Define

$$
N_1 i_m = \phi_m R_m \implies \phi_m = \frac{N_1 i_m}{R_m}
$$

And set
$$
\vec{e_s} = Ve^{j\omega_s t}
$$

Define Magnetizing Inductance L_m :

$$
L_m = \frac{N_1^2}{R_m}
$$

10.3 Phasor Diagram

10.4 Torque

$$
T_q \propto |\vec{B_r}||\vec{B_s}|\sin\gamma \propto |\vec{I_r}||\vec{I_s}|\sin\gamma
$$

If rotor load is resistive:

$$
\vec{i_r} \perp \vec{i_m} \implies |\vec{i_s} \sin \gamma = |\vec{i_m}|
$$

$$
T_q \propto |\vec{i_r}| |\vec{i_m}|
$$

10.5 Rotating IM

Stator doesn't move, rotor rotates at ω_m

$$
\vec{e_s} \vec{N_s} \cdot \frac{\vec{d\phi_m}}{dt} = L_m \cdot \frac{\vec{di_m}}{dt}
$$

voltage changes when rotor moves. For example, let $\vec{e_s} = \hat{E_s} e^{j\omega_s t}$. Then

$$
\vec{\phi_m} = \frac{1}{N_s} \int \vec{e_s} dt = \vec{\phi_m}^{(s)}
$$

$$
\vec{e_r} = N_r \frac{d\phi_m}{dt}
$$

10.5.1 IM Coordinate Systems

Define:

- $\vec{\phi_m}^{(r)}$: flux seen by rotor
- $\vec{\phi_m}^{(s)}$: flux seen by stator

$$
\vec{\phi_m}^{(r)} = \vec{\phi_m}^{(s)} e^{-j\omega_m t}
$$

10.6 Rotor Voltage, Flux

$$
\vec{e_r}^{(r)} = N_r \frac{d\phi_m^{(r)}}{dt} = \frac{N_r}{N_s} \hat{E}_s \frac{\omega_s - \omega_m}{\omega_s} e^{j(\omega_s - \omega_m)t}
$$

$$
\vec{\phi_m}^{(r)} = \vec{\phi_m}^{(s)} e^{-j\omega_m t} = \frac{1}{N_s} \frac{\hat{E}_s}{j\omega_s} e^{j(\omega_s - \omega_m)t}
$$

10.7 Slip

First, define ω_r to be the frequency of rotor voltage

$$
\omega_r\omega_s-\omega_m
$$

And slip to be:

$$
S = \frac{\omega_s - \omega_m}{\omega_s} = \frac{\omega_r}{\omega_s}
$$

10.8 VI Relationships in an IM

$$
\vec{e_r} = \frac{N_r}{N_s} \frac{\omega_r}{\omega_s} e^{-j\omega_m t} \vec{e_s}
$$

$$
\vec{i_r}' = -\frac{N_r}{N_s} e^{-j\omega_m t} \vec{i_r}
$$

10.9 Power

$$
P_{mech}=\frac{3}{2}\Re\left\{\vec{e_s}(\vec{i_r}')^*\right\}-\frac{3}{2}\Re\left\{\vec{e_r}(\vec{-i_r})^*\right\}
$$

Where

 \bullet $\frac{3}{2}$ $\Re \left\{ \vec{e_s}$ $(\vec{i_r})$ $\langle \rangle^*$ is the power leaving stator • $\frac{3}{2}\Re\left\{\vec{e_r}(-\vec{i}_r)^*\right\}$ is the power into Z_r

$$
P_{mech} = \frac{3}{2} \left\{ |\vec{i_r}'|^2 \frac{R_r'}{S} \right\} - \frac{3}{2} \left\{ |\vec{i_r}'|^2 R_r' \right\}
$$

10.10 Reflecting Rotor Impedance

Reflecting both rotor impedance and resistance yields a new IM model:

Where

- $\frac{R'_r}{S}$ is the total effective resistance
- R_r is the real resistance (accounting for turns ratio)
- $\left(\frac{1}{S} 1\right) R'_r$ is a representation of energy exchange (can be -ve or +ve) as a R value

10.11 Torque

$$
T_q = \frac{P_{mech}}{\omega_m} = \frac{3}{2} |\vec{i_r}'| R_r' \frac{\frac{1}{S} - 1}{\omega_m}
$$

The 3 represents 3ϕ (3 phase) IM.

$$
T_q=\frac{3}{2}|\vec{i_r}'|\frac{R'_r}{\omega_r}
$$

10.12 Speed Torque Diagram

$$
T_q = \frac{3}{2} \frac{|\vec{e_s}|^2}{\omega_s^2} \frac{\omega_r}{R'_r}
$$

Solving for ω_r

$$
\omega_m = \omega_s - \frac{R'_r}{\left(\frac{\sqrt{3}}{\sqrt{2}}\frac{\left|\vec{e_s}\right|}{\omega_s}\right)^2}T_q
$$

Where

$$
k|vec\phi_m| = \frac{\sqrt{3}}{\sqrt{2}} \frac{|\vec{e_s}|}{\omega_s}
$$

Rewriting:

$$
\omega_m = \omega_s - \frac{R'_r}{(k|\vec{\phi_m}|^2)}
$$

which resembles the DCM speed torque relationship (w/ different intercept).

10.12.1 Linear Range

In the IM linear speed torque range, R'_r/s dominates $\vec{i_m} \perp \vec{i_r}$

$$
T_q \propto |\vec{i_m}||\vec{i_r}|
$$

10.12.2 Rated Flux

Rated flux occurs if

$$
\frac{\left|\vec{e_s}\right|}{\omega_s} = \frac{\left|\vec{e_s}\right|_{rated}}{\omega_{s, rated}}
$$

10.13 IM Nameplate

 N_m will be near $\;$ 1800 $\;$ 3600 2 pole 4 pole 1200 6 pole where near means $\approx 95\%$

10.14 Control Modes

10.14.1 External Rotor Modes

requires doubly fed IM (rotor windings accessible)

 R_{ex} should be balance in each phase

$$
\omega_m = \omega_s - \frac{R'_r + R'_{ex}}{\left(\frac{\sqrt{3}}{\sqrt{2}} \frac{|\vec{e_s}|}{\omega_s}\right)^2} T_q
$$

Pros:

 $\bullet\,$ can start high torque loads

Cons:

- R_{ex} losses
- Needs doubly fed IM (exposed rotor windings, brushes)

10.14.2 $k\phi$ Control

Standard field weakening (like in DCM)

10.14.3 V/f Control

Objectives;

- Constant flux (max allowable T_q)
- Varying intercept (ω_s)

Pros:

- Can achieve T_q^{rated} at any speed
- $\bullet\,$ No \mathcal{R}_{ex} losses
- $\bullet\,$ use IM with internally shorted rotor
- no field current or PM's

Cons:

 $\bullet\,$ Need inverter that can change both $|\vec{e_s}|$ and ω_s

 $V\!/\!f$ control happens at $\vec{e_s},$ NOT $\vec{v_s}$

10.15 IM Parasitics

1. Rotor Leakage Inductance \mathcal{L}_r

- 2. Stator Resistance \mathcal{R}_s
- 3. Stator Leakage Inductance L^s
- 4. Rotational Losses
- 5. Core Losses (Hysteresis, Eddy Currents)
- 6. Inertia

10.16 Pull-Out Torque

Absolute max ${\cal T}_q$ that machine can produce. Impacted predominantly by R_r, L_r

$$
T_{q,po} = \frac{3}{2} \frac{|\vec{e_s}|^2}{\omega_s^2} \frac{1}{2L_r'}
$$

Want a large linear range: want L_r small. But, this yields massive inrush currents.

10.17 Efficiency

$$
P_m = \sqrt{3}|V_{s,llRMS}||I_{s,RMS}|\cdot PF
$$

where PF is the power factor

Figure 1: DC Current Control and Speed Control loops

Figure 2: DC Position Control