
1 Neuroanatomy
1.1 Neural Circuits

• Reflex: Bypasses brain (reflexes)
• Divergent: One to many
• Convergent: Many to one
• Reverberating: Positive feedback, always on

(breathing circuitry)
• Parallel After-Discharge: convergent + di-

vergent, visual integration, lag compensation

1.2 Brain Membranes/Barriers
Membranes Barriers
Dura Mater Blood-CSF
Arachnoid Layer Blood-Brain (BBB)
Pia Mater Arachnoid Barrier

2 Electrophysiology
2.1 Circuit Model of Neuron
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where g is the conductance, E is the equilibrium
potential, C is the capacitance, Vm is the resting
potential
2.2 Nernst Planck Equation

JP = −Dp
(
∇Cp +

ZpCpF

RT
∇φ

)
Where J is the ionix flux , R is the gas constant, T is
the absolute temperature, F is Faraday’s constant
2.3 Equilibirium
At equilibrium, Jd + Je = Jp = 0. Nernst-planck:

∇Cp = −
ZpCpF

RT
∇φ

dCp
Cp

=
ZpCpF

RT
dφ

Then the equilibrium potential across the membra-
ne is

V
eq
m = − RT

ZpF
ln

(
Cpi
Cpe

)
where Cpi , Cpe are the intracellular and extracellu-
lar ion concentrations, respectively.
3 Signal Processing
3.1 Signals

Term Definition
Linear A · g(x) = g(Ax)

f (x) + f (y) = f (x+ y)
Stationary constant statistical properties
Time-Invariant statistical properties do not

change with time
3.1.1 Convolution

(f ∗ g)(t)B
ˆ ∞
−∞

f (τ)g(t − τ)dτ =
ˆ ∞
−∞

f (t − τ)g(τ)dτ

3.1.2 Expected Value

E[x] =
ˆ ∞
−∞

x · PDFX (x)dx

3.1.3 Cross-Correlation
RXY [x,y] = E[X[x]Y [y]]

(f ⋆ g)(t)B
ˆ ∞
−∞

f ∗(τ)g(t − τ)dτ

3.1.4 Auto-Correlation
RXX [x,y] = E[X[x]X[y]]

3.2 Signal Processing Equations
Mean: x = 1

N
∑N
n=1 xn

x(t) = 1
T

´ T
0 x(t)dt

RMS: xrms =
[

1
N

∑N
n=1 x

2
n

] 1
2

xrms(t) =
[

1
T

´ T
0 x(t)2dt

] 1
2

Variance: σ2 = 1
N−1

∑N
n=1(xn − x)2

σ2 = 1
T

´ T
0 (x(t)− x)2dt

Std. Dev: σ =
√
σ2

SNR: SNRdB = 20log srms
nrms

SNRlinear = 10
SNRdB
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Power spectrum: P S(f ) = 1
T

´ T
0 rxx(t)e−j2πnf1tdt

P S[n] =
∑N−1
n=0 rxx[k]e−j2πnf1T k

3.3 Fourier Transform

X(jω) =
ˆ ∞
−∞

x(t)e−jωtdt

X(ejω) =
∞∑

n=−∞
x[n]e−jωn

3.4 CTDT

H[z] =
Y [z]
X[z]

=
b[0] + b[1]z−1 + . . .+ h[k]z−k

1 + a[1]z−1 + . . .+ a[l]z−l

3.5 Averaging
Averaging can reduce noise when multiple observa-
tions are possible

σ2 =
1
N

N∑
n=1

σ2
n σavg =

σ
√
N

3.6 Sampling
where fs = 1

Ts
is the sample frequency, Ts is the

sample period, n is the sample index, t = nTs
3.6.1 Shannon Sampling Theory

fNyquist =
fs
2

3.6.2 Aliasing

Aliasing occurs when fmax >
fs
2

3.7 Power Spectrum
Since autocorrelation has even symmetry,

P S(f ) =
1
T

ˆ T

0
rxx(t)cos(2πmf t)dt m = 0,1,2, ·

P S[n] =
N−1∑
n=0

rxx[k]cos
(2πnm

N

)
m = 0,1,2, ·,N

PS can be calculated from FT: P S(f ) = |X(f )|2
4 Filters

fc = 3dBpoint = 0.707 ·G
where G is the filter gain
4.1 Quantization Error

q =
Vmax
2b − 1

volts

Where q is the quantization step, b is the # of bits.
If the quant noise is evenly distributed ∈ [−q2 ,

q
2 ]

σ2 =
ˆ q/2

−q/2

e2

q
de =

e3

3q

∣∣∣∣∣∣
q/2

−q/2
=
q2
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4.2 Dynamic Range
DR = 2b − 1 DRdB = 20 · log10 (2b − 1)

4.3 Finite Impulse Response (FIR)

y[n] =
N−1∑
k=0

b[k]x[n− k] =
1
N

N−1∑
k=0

x[n− k]

h[n] =
1
N

N−1∑
k=0

δ[n− k] =
{ 1
N 0 ≤ n < N
0 n < 0,n ≥N

4.4 Infinite Impulse Response (FIR)
y[n+ 1] = Ay[n] +Bx[n]

4.5 Fundamental Filter Equation

y[n] =
K−1∑
k=0

b[k]x[n− k]−]
L∑
l=1

a[l]y[n− l]

4.6 Other FIR Filters
By modifying b[k], create other filters from FIR:

High pass : b[k] =
{−sin(2πkfc)

πk k , 0
1− 2fc k = 0

Band pass : b[k] =
{

sin(2πkfh)
πk − sin(2πkfl )

πk k , 0
2(fh − fl ) k = 0

Band Stop : b[k] =
{

sin(2πkfl )
πk − sin(2πkfh)

πk k , 0
1− 2(fh − fl ) k = 0

Note: Order of highpass/bandstop should be even,
odd coeff’s

Moving Average (FIR) only b[n]
Autoregressive Moving
Average (ARMA/IIR) a[n],b[n]
Autoregressive (AR) only a[n], b[k] = 1

4.7 Wiener Filter

y[k] =
N−1∑
k=0

b[k]x[n− k] e[k] = d[k]− y[k]

where d[k] = desired response, and e[k] = error.
b[k] tuned to reduce e2[n] (least mean square),
y[k]→ d[k]
4.8 Adaptive Filtering

y′[k] =
N−1∑
k=0

bn[k]x[n− k] y[k] = d[k]− y′[k]

variable frequency char., bn[k] changes over time
5 Frequency Analysis
5.1 Short-Term Fourier Transform

X(t, f ) =
ˆ ∞
−∞

x(t)w(t − τ)e−j2πmf tdt

X[m,k] =
N∑
n=1

x[n](W [n− k]e−jωm/n)

The STFT has a time-frequency uncertainty limit
given by BT ≥ 1

4π , where B is bandwidth resolution
and T is time resolution.
5.2 Continuous Wavelet Transform

W (a,b) =
ˆ ∞
−∞

x(t)
1
√
|a|

Ψ ∗ ·
(
t − b
a

)
dt

b = 0, a = 1 −→ mother wavelet. Tradeoff between
time/frequency: ∆ωψ(a)∆tψ(a) = ∆ωψ∆tψ = c ≥ 0.5
for constant c.
5.2.1 Morlet Wavelet

Ψ (t) = e−t
2

cos

π
√

2
ln2

t


5.3 Discrete Wavelet Transform
Restricts CWT to power of 2, downsamples data.
6 Multivariate Analysis
6.1 Linear Transformation
y1(t)
y2(t)
M

yM (t)

 =W


x1(t)
x2(t)
M

xM (t)

 yi (t) =
M∑
j=1

wijxj (t), i = 1,K

Interpretation: rotation of the data set.



6.2 Principle Component Analysis
A series of linear transformations until all variables
are uncorrelated. Provides information on dimen-
sionality of dataset, and fewest # of variables w/
most essential info. Scree plot shows λ (eigenva-
lues) of PCA. PCA finds directions of maximum
variance.
6.3 Independent Component Analysis

x = As =


x1(t)
x2(t)
...

xN (t)

 = A


s1(t)
s2(t)
...

sN (t)

 s = A−1x

Where A is the mixing matrix, s are hidden (source)
signals, and x are measured signals. ICA can only be
applied to non-Gaussian signals. Cannot determine
variances, energies, and amplitudes of sources. ICA
finds directions of maximum independence
7 Nonlinear Dynamics
Phase-space plot can give important information
about a system from signals. Attractors are tenden-
cy of a system at equilibrium.
Exponential Divergence: A property of chaotic sys-
tems where trajectories from close initial conditions
are wildly different.
7.1 Delay Embedding
Time series x[n] (length N ) can be reconstructed in-
to multidimensional time series y[nd , k] of k dimen-
sions from 1 to m. Each delayed vector nd comes
from x[n] delayed by τ

y[nd , k] = x[n+ (k − 1)τ,k] . . .x[N − (m− 1)τ,m]

m should be twice D (D = true dimension of sys-
tem). τ can be any number, but in practice not too
large or small.
8 Information Theory
8.1 Entropy
Entropy is defined as the number of bits needed to
encode information uniquely

Hx = −
∑
m

p(x) log2 p(x)

Max entropy: p(x) = 1
N ∀x⇒Hx = 1

Min entropy: p(x) = 1⇒Hx = 0
For non-stochastic signals, entropy is a measure-
ment of signal regularity. Sine wave is regular ⇒
low entropy.
8.1.1 Coin Example of Entropy
Biased coin (7500 heads, 2500 tails)

H = −(log2(0.75) ∗ 0.75 + log2(0.25) ∗ 0.25) = 0.8113

Unbiased coin (5000 heads, 5000 tails)

H = −(log2(0.5) ∗ 0.5 + log2(0.5) ∗ 0.5) = 1

8.2 Approximate Entropy (ApEn)
Can account for nonlinear properties unlike spec-
tral/probabilitic methods. Bin segments of samples

w/ length m, delay τ . Sample with similar, repea-
ting segments⇒ high regularity, low entropy. Sam-
ple Entropy (SampEn) refinement of ApEn (more
stable, remove bias) due to self match.
8.3 Mutual Information

MIxy =Hx +Hy −Hxy =
∑
mk

p(x,y) log2
p(x,y)
p(x)p(y)

Hxy = −
∑

mkp(x,y) log2 p(x,y)

Need to estimate p(x,y) with cells (2D histogram),
each cell contains count of pairs of values
9 Machine Learning
9.1 Measures of Accuracy & Metrics

Sens. =
T P

T P +FN
Spec. =

TN
TN +FP

ROC curve:

9.2 Kernel Machines
Transform data into higher-dimensional space, ge-
nerate linear boundary. This is always possible for
sufficient dimensions (Cover’s Theorem)
9.3 Support Vector Machines
Finds points closest to boundary (support vectors),
get hyperplane between support vectors. AKA Ma-
ximum Margin classifiers.
9.4 Cluster Analysis
k-nearest neighbors: Take average of k nearest trai-
ning points, assign test point. k-means clustering:
Reduce dataset to k prototype centers, classify test
points based on closest prototype.
10 Electrical Neural Interfaces
10.1 Amplifiers

V + −V − =
Vo
A

Ideal: Rin =∞, Ro = 0, A =∞
10.2 Inverting Amplifiers

ii = if ⇒
Vi − 0
Ri

=
0−Vo
Rf

⇒ Vo
Vi

= −
Rf
Ri

10.3 Neural Signal Amplification w/ Electrode
vi

RE
+

−

RI

RF

vo

ii = if ⇒
V −

Ri
=
Vo −Vi
Rf

⇒ Vo
Vi

=
Rf +Ri
Ri

10.4 Common Mode Rejection

VCM =
V + +V

2
VDM = V + −V −

V + = VCM +
VDM

2
V − = VCM −

VDM
2

Common Mode Rejection Ratio: CMRR = AV ,DM
AV ,CM

10.5 Differential Amplifier

VCM −V−
Ri

=
V− −Vo
Rf

VCM −V+
Ri

=
V+
Rf

V+ = V−

VDM −V−
Ri

=
V− −Vo
Rf

VDM −V+
Ri

=
V+
Rf

V+ = V−

AV ,DM = −
Rf
Ri

= − R2
2R1

− R4(R1 +R2)
2R1(R3 +R4)

Want R1 = R3 = Ri , R2 = R4 = Rf
10.6 Instrumentation Amplifier

V1 = V2 = VCM V ′1 = V ′2 = VCM ⇒ IG = 0,Vo = 0

IG =
V ′1 −V

′
2

RG
Vo1−Vo2 = VDM

(
1 +

2R1
RG

)

AV ,DM =
(
1 +

2R1
RG

)
(−R3
R2

10.7 Shielding

11 Stimulation
Voltage: Poor safety, good efficiency (IZL = VZL /ZL)
Current: Good accuracy (safety), limited efficiency
(VZL = IZL ·ZL)
11.1 Biphasic Stimulation

11.2 Stimulation Strength Curve

11.3 Electrode Configuration

12 Constants and Units
Constant Value
Gas Constant 8.3145 J

mol·K
Faraday Constant 96485.3321 C

mol


