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0.1

+ Controller Plant
r(t) e(t) µ(t) y(t)

−

Where

• µ(t) is the control input (decision variable)

• y(t) is the output variable (measured with sensors and also the target of
our control)

• r(t) is the reference signal. We want y(t)→ r(t) as t→∞

• e(t) is the tracking error. We want e(t)→ 0 as t→∞

1 Signals

1.1 Time Constant

e−A·t ↔ e−t/τ → τ =
1

A

2 Control System Models

2.1 Non-Linear Time Invariant State Space (NN)

x =

x1

...
xn

 y =

y1

...
yp

 u =

u1

...
um


ẋ = f(x, u) = f(x1, ..., xn, u1, ..., un)
y = h(x, u) = h(x1, ..., xn, u1, ..., un)
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2.2 LTI State Space Models

ẋi = ai1x1 + ...+ ainxn + bi1u1 + ...+ bimum
ẏj = cj1x1 + ...+ ajnxn + dj1u1 + ...+ dimum
ẋ = Ax+Bu y = Cx+Du x = [x1 · · ·xn]T

2.3 LTI Input/Output Models (I/O) Models

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y =

bm
dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · ·+ b1

du

dt
+ b0u

for m ≤ n

3 Equilibrium

For a NN system, a state x̄ ∈ R is an equilibrium if

f(x̄, ū) = [0, · · · , 0]T

4 Linearization

x̄ = [x̄1, · · · , x̄n]T , ū
x̃ := x− x̄ ũ := u− ū ỹ := y − h(x̄, ū)

Then, the linearization of x̄ is given by

˙̃x = Ax̃+Bũ ỹ = Cx̃+Dũ

A =

[
∂f

∂x

∣∣∣∣
(x̄,ū)

]
B =

[
∂f

∂u

∣∣∣∣
(x̄,ū)

]

C =

[
∂h

∂x

∣∣∣∣
(x̄,ū)

]
D =

[
∂h

∂u

∣∣∣∣
(x̄,ū)

]

5 Matrix Inverses

A−1 =
adj(A)

detA
=

(C)T

detA
, Cij = (−1)i+jMij

adj(A) =

[
a22 −a12

−a21 a11

]
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adj(A) =



+

∣∣∣∣a22 a23

a32 a33

∣∣∣∣ − ∣∣∣∣a12 a13

a32 a33

∣∣∣∣ +

∣∣∣∣a12 a13

a22 a23

∣∣∣∣
−
∣∣∣∣a21 a23

a31 a33

∣∣∣∣ +

∣∣∣∣a11 a13

a31 a33

∣∣∣∣ − ∣∣∣∣a11 a13

a21 a23

∣∣∣∣
+

∣∣∣∣a21 a22

a31 a32

∣∣∣∣ − ∣∣∣∣a11 a12

a21 a22

∣∣∣∣ +

∣∣∣∣a11 a12

a21 a22

∣∣∣∣


(1)

6 Final Value Theorem

If limt→∞ f(t) exists, then

lim
t→∞

f(t) = lim
s→0

sF (s)

6.1 FVT Existence Condition

A signal f(t) is bounded iff F (s) has poles with real part ≤ 0 and non-repeated
poles with real part = 0

7 Initial Value Theorem

lim
t→0

f(t) = lim
s→∞

sF (s)

8 Laplace Transform (LT)

Let f(t) be a function f : R→ R. Then

L{f(t)} = F (s) :=

ˆ +∞

0

f(t)e−stdt

Where F : C→ C. The LT exists if

1. f(t) is Piecewise Continuous (PWC)

2. ∃M ≥ 0, a ∈ R s.t. |f(t)| ≤Meat ∀t ≥ 0

8.1 Basic Laplace Table

L{1(t)} = 1
s L{tn} = n!

sn+1

L{ t
k

k! e
at} = 1

(s−a)k+1 L{eat} = 1
s−a

L{sin(kt)} = k
s2+k2 L{cos(kt)} = s

s2+k2

L{sinh(kt)} = k
s2−k2 L{cosh(kt)} = s

s2−k2
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8.2 First Translation Theorem

L{eatf(t)}(s) = L{f(t)}(s− a) = F (s− a)

8.3 Second Translation Theorem

L{f(t− a)u(t− a)} = e−asF (s)
where u is the unit step function and a > 0.

8.4 Transforms of Derivatives

If f, f ′, ...f (n−1) are cts on [0,∞) and are of expon. order, and if f (n)(t) is
piecewise cts on [0,∞), then

L{f (n)(t)} = snF (s)− sn−1f(0)− sn−2f ′(0)− ...− f (n−1)(0)

L{f ′′(t)} = s2F (s)− sf(0)− f ′(0)

8.5 Derivatives of Transforms

If L{f(t)} = F (s) and n = 1, 2, 3, ..., then

L{tnf(t)} = (−1)n
dn

dsn
F (s)

8.6 Transform of Integrals

L

{ˆ t

0

f(τ)dτ

}
=
F (s)

s

ˆ t

0

f(τ)dτ = L−1

{
F (s)

s

}

9 Inverse Laplace Transform

9.1 Basic Inverse Laplace Transforms

L−1
{

1
s

}
= 1 L−1 {1} = δ(t)

L
{

1
s−a

}
= eat L−1

{
n!
sn+1

}
= tn

L−1
{

k
s2+k2

}
= sin(kt) L−1

{
s

s2+k2

}
= cos(kt)

L−1
{

k
s2−k2

}
= sinh(kt) L−1

{
s

s2−k2

}
= cosh(kt)

9.2 Inverse Laplace Transform Formula

f(t) =
1

2πi

ˆ σ+i∞

σ−i∞
F (z)eztdt =

n∑
k=1

Res(estF (s), sk)
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9.3 Residue Calculation

In general, the residue of a function F (s) at a pole can be calculated with

Res(F (s), sk) =
1

(n− 1)!
lim
s→sk

dn−1

dsn−1
(s− s0)nF (s)

Where n ≥ 1 is the order of the function F (s).

10 Model Conversions

10.1 Input/Output to Transfer Function

For an IO model of the form

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a0y = bm

dmu

dtm
+ · · ·+ b0u

with y(0) = ẏ(0) = ÿ(0) = · · · = 0, the equivalent Transfer Function model
is given by

G(s) =
bms

m + · · ·+ b0
sn + an−1sn−1 + · · ·+ a0

10.2 Transfer Function to Input/Output

For a Transfer Function model of the form,

Y (s) = G(s)U(s)
the equivalent Input/Output model is given by

y(t) = L−1{Y (s)} = L−1{G(s)U(s)}

y(t) = g(t) ∗ u(t) =

ˆ t

0

g(t− τ)u(τ)dτ

10.3 State Space to Transfer Function

For a State Space model of the form,

ẋ = Ax+Bu
y = Cx+Du

the equivalent Transfer Function model is given by

Y (s) = [C(sI −A)−1B +D]U(s)
G(S) = C(sI −A)−1B +D

10.3.1 Notes

The values of S ∈ C for which sI −A is not invertible are poles of G(s)
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10.4 Transfer Function to State Space

V (s) =
1

sn + · · ·+ a0
U(s) , Y (s) = (bms

m + · · ·+ b0)V (s)

f(x, u) =


0 1 0 · · · 0
0 0 1 · · · 0

· · ·
0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

x+


0
0
· · ·
0
1

u
y = [b0 b1 · · · bm 0 · · · 0]x

11 Poles

1st Order: (s+ p1) 2nd Order: [(s+ σ)2 + ω2
d]

11.1 Pole Poly Representations

as+ b

[(s+ σ)2 + ω2
d]
↔ as+ b

s2 + 2ζωns+ ω2
n

σ = ζωn ωd =
√
ω2
n − ζ2ω2

n =
√

1− ζ2

ζ =
σ√

σ2 + ω2
d

ωn =
√
σ2 + ω2

d

12 Transient Performance

12.1 2nd Order Systems

12.1.1 Settling Time

Ts ≈ −
ln(2 · 10−2

√
1− ζ2)

ζωn
≈ 4

ζωn
=

4

σ

12.1.2 Percent Overshoot and Peak Time

Tp =
π

ωd
=

π√
1− ζ2

, ζ =
− ln(%OS)√
π2 + ln2(%OS)

%OS = y(Tp)− 1 = e
−ζπ√
1−ζ2

12.1.3 Rise Time

Trωn ∝ ζ −→ Trωn ≈
1.8

ωn
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12.1.4 Effect of Additional Pole/Zeroes

Additional Pole/Zeroes in LHP have little effect, as long as Re{P} << σ →
Re{P} ≤ 10 · σ. Zeroes in RHP (Nonminimum Phase) and change sign of
y(∞).

12.2 Higher Order (Dominant Pole)

12.2.1 Phase Margin

PM = tan−1

 2ζ√
−2ζ2 +

√
1 + 4ζ4


PM ≈ 100ζ for 0 ≤ ζ ≤ 0.6

12.2.2 Bandwidth

ωBW = ωn

√
1− 2ζ2 +

√
2− 4ζ2(1− ζ)2

Ts ≈
4

ζωn
=

4

ζωBW
ωn

√
1− 2ζ2 +

√
2− 4ζ2(1− ζ)2

12.2.3 Crossover Frequency

ωc = ωBW

√√
1 + 4ζ4 − 2ζ2√

1− 2ζ2 +
√

2− 4ζ2(1− ζ2)
≈ 0.635ωBW

ωc ≈ 0.5 · ωBW ωc ≤ ωBW ≤ 2ωc

13 Stability

13.1 Internal Stability

A system is Internally Stable if ∀xo ∈ R the solution of ẋ = Ax with I.C
x(0) = x0 is bounded.

13.2 Asymptotic Stability (AS)

A system is asymptotically stable if ∀xo ∈ Rn with I.C. x(0) = x0, x(t)→ 0
as t→∞.

ẋ = Ax X(s) =
Adj(sI −A)x0

det(sI −A)
AS if all poles (all eigenvalues) of X(s) in OLHP.
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13.3 Input/Output Stability (BIBO)

A system is BIBO Stable if for any bounded input x(t), the output y(t) is also
bounded.

Y (s) = G(s)U(s) G(s) =
CAdj(sI −A)B +D

det(sI −A)
BIBO Stable if all poles of G(s) in OLHP.

13.4 Routh Array

# of sign variations = # of roots with real part < 0

b1= −1
an−1

det

 1 an−2

an−1 an−3

 b2= −1
an−1

det

 1 an−4

an−1 an−5


c1= −1

b1
det

an−1 an−3

b1 b2

 c2= −1
b1

det

an−1 an−5

b1 b3



14 Basic (Standard) Control Problem

E(s) =
1

1 + CG
R(s) +

−G
1 + CG

D(s) = ER ·R+ ED ·D

U(s) =
C

1 + CG
R(s) +

1

1 + CG
D(s)

Closed Loop System BIBO Stable if G4 BIBO Stable.

14.1 G4 Stability

1. No illegal pole/zero cancellations in CG
2. Zeroes of 1 + CG in OLHP

14.2 Type

A TF has type l if it has exactly l poles at 0. Suppose R(s) has type K. If CG
has type K − 1, then e(∞) is nonzero, finite. If CG has type K − 2, then e(∞)
is unbounded.

15 Internal Model Principle (IMP)

R(s), D(s) rational, strictly proper. Then e(t) → 0 iff 1. G4 BIBO Stable 2.
Poles of R are also poles of CG (CG type KR) 3. Poles of D are also poles of
C (C type KD)
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16 Controllers

16.1 PD Controllers

Not physically implementable (unless ẏ(t) sensor).

C(s) = K(Td · s+ 1) ↔ u(t) = Ke(t) +KTdė(t)
Use to increase the PM (by a max of π/2 by placing 1

Td
before the ωc

Physical System

I/
O

N
on

lin
ea

r
T

F

N
onlinear

SS

Figure 1: Blue arrows represent conversions from a physical model to a mathe-
matical model. Green arrows represent unique conversions between mathemat-
ical models of systems. Red arrows represent non-unique conversions between
mathematical models.
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